MultiStop
 Plus

TECHNICAL SPECIFICATION

Goodwin Electronics Ltd.
3 Bassendale Road
Croft Business Park
Bromborough
Wirral
CH62 3QL United Kingdom
Tel: +44 (0)151 3344555
FAX: +44 (0)151 3341616

Documentation

This product is available with two manuals; Technical Specification and Operators Manual. This is the Technical Specification which has been written for the engineer to use and refer to when designing, commissioning and maintaining the MultiStop ${ }^{\text {Plus }}$ system. The other document explains how the positioner is used in day - to - day operation i.e. Programming, Jogging and auto execution of programs.

Please note

The contents of this specification are designed to give the reader an understanding of how the MultiStop ${ }^{\text {Plus }}$ controller operates. The product described is subject to continuous development and improvement. All information of a technical nature and particulars of the product, and its use are given by Goodwin Electronics Ltd in good faith. However, it is acknowledged that there may be errors and omissions in this document. We shall not be liable for the loss or damage whatsoever arising from the use of any information in, or any omissions from, this document.

CONTENTS

1. INTRODUCTION 5
2. SPECIFICATIONS 6
2.1. System Mechanical Specification 6
2.2. System Electrical Specification 7
2.3. Display and Keypad 8
2.4. SOFTWARE SPECIFICATION 8
3. INSTALLATION 11
3.1. LOCATION 11
3.2. SAFETY 11
3.3. The MultiStop power supply 11
3.4. OUTPUT CONNECTIONS 11
3.4.1. Default Output Configuration 12
3.5. INPUT CONNECTIONS 13
3.5.1. Default Digital Input Configuration 14
3.6. Encoder Connections 15
3.7. RS485 CONNECTIONS 16
3.8. Interbus S Connections (Option) 16
3.9. AUTO DATUM CYCLE 16
3.10. Panel Cut Out Dimensions 17
4. PARAMETER CONFIGURATION 18
4.1. InPUT SETUP 18
4.2. OUTPUT SETUP 19
5. MACHINE SETUP 20
5.1. AXES TYPE 20
5.2. AXIS MODULUS (ENGINEERING WINDOW ONLY) 20
5.3. APPLICATION TYPE (ENGINEERING WINDOW ONLY) 20
5.4. RS485 MASTER OR SLAVE (ENGINEERING WINDOW ONLY) 21
5.5. RS485 ADDRESS (ENGINEERING WINDOW ONLY) 21
5.6. DISPLAY RESOLUTION 21
5.7. DISPLAY DIGITS (ENGINEERING WINDOW ONLY) 22
5.8. Display Data (engineering window only) 22
5.8.1. Machine Datum Direction 22
5.9. Machine Datum Method 23
5.10. DATUM MEMORY 23
5.11. DATUM LOAD VALUE 24
5.12. Count Direction 24
5.13. Motor Phase 24
5.14. Scale Factor 25
5.15. Negative inposition zone 25
5.16. Positive inposition zone 25
5.17. Negative (-ve) Axis Limit 26
5.18. Positive (+Ve) Axis Limit 26
5.19. INTERRUPT PERIOD (ENGINEERING WINDOW ONLY) 26
5.20. MAXIMUM FEED RATE 27
5.21. JOG COARSE FEED 27
5.22. JOG FINE FEED 27
5.23. DATUM SPEED 28
5.24. ENCODER COUNTS / REVOLUTION (ENGINEERING WINDOW ONLY) 28
6. SERVO SET 29
6.1. Differential Period 29
6.2. PID INTEGRAL TERM 29
6.3. PID DIFFERENTIAL TERM 29
6.4. PID VELOCITY FF TERM 30
6.5. PID VELOCITY FB TERM 30
6.6. DAC OFFSET 30
6.7. Motor Acceleration Constant 31
6.8. PID PROPORTIONAL GAIN 31
6.9. PID INTEGRAL GAIN 31
6.10. PID DIFFERENTIAL GAIN 32
6.11. PID VELOCITY FF 32
6.12. PID VELOCITY FB 32
6.13. INTEGRAL LIMIT 33
6.14. FOLLOWING ERROR 33
6.15. AXIS TEST LOWER LIMIT 33
6.16. AXIS TEST UPPER LIMIT 34
7. FRONT END SETUP 35
8. PASS WORDS 37
9. MAINTENANCE 38
9.1. Battery Replacement 38
9.2. LCD BACKLIGHT 38

1. INTRODUCTION

The MultiStop ${ }^{\text {Plus }}$ is designed to control up to two axes of motion servo motors or other motors with variable speed drives. It is a fully self contained unit with up to two 16 bit +/- 10 V servo command signals for controlling the motion of the motors in a full position closed loop manner. There are up to six terms in the position control loop that can be used to optimise motion. Its range of applications include,

- Packaging / Indexing Machines
- Robotics
- Drilling machines
- Back Stop Positioners

The various options available are given in the model number description given below;

MP A 2 P 4 C INP 81 / X100

Software Version
Number of axes

Mounting

A

1 or $2-$

Panel - P
Standalone-S

Supply Voltage

100-240 V AC $50 / 60 \mathrm{~Hz}-4$

Serial Comms.

RS485-C
RS485 \& Interbus S - S

X number indicates a special unit
1 - PNP plus relays Outputs
F - All relay outputs
Encoder Supply
8-5 or 12 Vdc (PNP), user selectable

Encoder Type

INP - Incremental with positive mark pulse INV - Incremental with negative mark pulse

The various options available are in the model number description given below, check which options your unit has before proceeding any further.

Use this description to verify the model you have or require.

2. SPECIFICATIONS

2.1. System Mechanical Specification

Approximate weight:
1 kg
Protection:
IP 65 front and IP 40 rear
Ambient Working Temperature Range: 0 to $50^{\circ} \mathrm{C}$
Storage/shipping Temperature: -40 to $60^{\circ} \mathrm{C}$
Humidity requirement:
5 to 95% non condensing

Figure 1: Overall Dimensions

2.2. System Electrical Specification

Linear scales or Encoders:
Differential Quadrature square wave signal inputs from linear scales or rotary encoders. A full description of the encoder/scale inputs is given in section 3.5.1.The maximum count rate is 120 kHz full quadrature on each axis. A single axis MultiStop ${ }^{\text {Plus }}$ has one encoder input a two axis system has two inputs

Standard Outputs:

All systems have a volt free relay output which indicates system healthy
(Watchdog).
One axis MultiStop ${ }^{\text {Plus }}$;
One 14 bit +/- 10V analogue output
Two user definable relay outputs are fitted as standard
(switching 24 V dc @ 0.5 A) maximum)
Upto 24 relay output can be ordered if required
14 PNP (source current 50mA @24V Dc nominal, absolute maximum
voltage 25V) outputs
Two axis MultiStop ${ }^{\text {Plus }}$
Two 14 bit +/-10V analogue output
Two user definable relay outputs are fitted as standard
(switching 24 V dc @ 0.5 A) maximum)
Upto 24 relay output can be ordered if required
22 PNP (source current $50 \mathrm{~mA} @ 30 \mathrm{v}$) outputs.
Optional Output Configuration:
All outputs can be made relay outputs which are capable of switching 24V DC @ 0.5 A maximum

Use the description in the INTRODUCTION on page 5 to determine the output configuration you have. A description of the output circuits can be found in section 3.4

Watchdog A relay output (closed for system healthy) is available. The watchdog monitors the correct operation on the software and hardware. It will indicate a fault within 20 milliseconds of it occurring.

Inputs: \quad Single axis MultiStop ${ }^{\text {Plus }}$
16 Dedicated Inputs.
Two axis MultiStop ${ }^{\text {Plus }}$

24 Dedicated Inputs.
Input signals must be in the range 22 to 24 V DC (absolute maximum 25 V DC). A full description of the Inputs is given in section 3.5.

Supply: $\quad 100-230 \mathrm{~V}(+10 \%,-15 \%)$ Universal AC $50 / 60 \mathrm{~Hz}$ supply. Power consumption is 30VA maximum.

RS485: A single RS485 channel that can communicate with either other MultiStop ${ }^{\text {Plus }}$ units or a remote PC is available. Software to implement a wide range of commands is available from Goodwin Electronics, please ask for details.

InterBus S: The unit can be made a slave unit using the InterBus-S protocol. This is an optional feature, refer to the INTRODUCTION on page 5 to determine if you have this option fitted.

CE Standards: The unit conforms to EN55 022, EN60 555, EN 50 093, IEC 801-2 and IEC801_4 of the current EMC requirements. It also meets the low voltage directive requirements $73 / 23 / E E C$.

Connectors: Encoder inputs on 15 W high density D type connector (same footprint as a 9 W D type connector).
RS485 on a 9 W D type connector
Digital I/O on 8 way pluggable terminals (Weidmuller BL3.5/8)
Battery: A lithium battery (10 year life) allows the program and configured parameter data to be stored safely during power down. A battery-low monitoring system will provide adequate warning to allow batteries to be changed without loosing data.

2.3. DISPLAY and Keypad

Dimensions: 144 mm high, 194 mm wide, including bezel
Keypad type: Membrane type keyboard with tactile feedback, 25 keys sealed to IP67
Main Display: 240×128 supertwist backlit LCD.
Description: The display text will be dependant on which mode of operation has been selected. It consists of single / triple height characters and in all modes has 4 soft key functions available. A description of the display formats is given in the operators manual.

2.4. Software Specification

Modes: The controller has several operating modes, these are;

AUTO mode

This is the mode into which the unit will power up. All other modes are accessed from this mode. The ESC key will return the user to this mode from any other mode.

LIST mode

The list of program files contained within the unit will be displayed on the screen in this mode. Each file has three attributes,

Name

Whenever a new program is made it is given an 8 digit number.
The first program generated will be AAAAAAAA, the next AAAAAAAB etc

Description

When a program has been selected the description of that program is displayed in the AUTO window

Identity number

This is a the number assigned to the program that can be used to remotely select the program via the digital input lines

Any file can be selected using the scroll keys. The currently selected file will be shown in the status bar line. A copy of a the selected program can be made using the COPY softkey. The copied file will have its last character changed. The attributes of the copied file can be changed as described below.

Both the ID and description program attributes can be change using the soft keys. The internally assigned number of the program can be altered using the ID softkey.

PROGRAM mode

In this mode the data for all of the commands in the currently selected program are viewed or altered entered.

JOG mode

In this mode each axis can be moved directly by using the UP or DOWN arrow keys. Each axis can also be jogged using externally commanded using the digital input lines.

DATUM mode

In this mode each axis can be made to automatically find the datum marker and to load a specific positional value into the display. For this to happen the automatic datumming option has to be selected in Configure mode.

PARAMETER CONFIGURE mode

This is a special mode in which all the system operating parameters are set up.
Programs: \quad The MultiStop ${ }^{\text {Plus }}$ has the ability to store (and retain at power off) a number of programs containing a given number of lines. The program memory allocation is dynamic therefore the maximum number of programs depends on the number of lines per program. The ultimate maximum is 300 programs 30 lines. The maximum number of lines per program is 100 .

Each line of the program contains all the information for an instruction which can be one of the following,

- A move to X and Y Target position in a variety of ways
- Set or reset an auxiliary output
- Subroutine call
- A loop instruction to repeat a set of instructions N times
- The type of move, Incremental or Absolute
- A Dwell timer.
- A Halt instruction.
- A feed rate
- Read the status of an input into a variable.
- A wait for input signal to be true.
- Do - While loop
- If - Else - End if loop
- Set a variable
- Modify (adjust) the variable

Datums: An automatic and a manual datum procedure is available.

This page left intentionally blank.

3. INSTALLATION

3.1. LOCATION

The MultiStop control unit is designed for panel mounting applications and should be mounted in a convenient position for an operator to see the displays and be able to easily enter program information into the unit.

Take care to prevent liquids and swarf from entering the enclosure and hence the MultiStop case.
For free standing applications a small enclosure should be used. It conveniently fits into many standard enclosures, for example the European manufacturer "Rittal" enclosure part number AE1031 (380 x 300×210) would easily house MultiStop and a row of connectors.

3.2. SAFETY

Mains voltages are present inside MultiStop and can cause severe electric shock. If it is necessary to remove the cover of the MultiStop, it must be disconnected from the mains supply before work on it is carried out.

A good earth cable must be attached to the MultiStop and its impedance must conform to the requirements of local industrial safety regulations and should be inspected and tested at appropriate regular intervals.

3.3. THE MuLTISTOP POWER SUPPLY

The MultiStop unit should be connected to a clean 100-230 (+10\% - 15\%) VAC $50 / 60 \mathrm{~Hz}$ supply. This supply should not be shared with other electrically noisy equipment. Filtering should be provided if required.

3.4. Output Connections

Weidmuler BL3.5 / 8 (order number 159742) plugs are used for output connections Wire the control inputs in accordance with the details in this section.

Banks X, Y and A (pins 9-16) have polarising pins at positions 2 and 7 on the plug.
Bank B (pins 9-16) has polarising pins at positions 1 and 7 on the plug.
Bank B (pins $1-8$) has polarising pins at positions 2 and 8 on the plug.

DO NOT MAKE OR BREAK CONNECTIONS WITH THE POWER ON.

An external supply is required to power the output lines. If a DC load is being driven then a 24 V DC (absolute max. 25 V DC) supply of suitable capacity should be connected to the external supply pin see.

If the MultiStop has the relay option fitted the power consumption of the relay output stage is 8 mA per relay. This requirement should be added to your switching needs to achieve a minimum overall 24V DC power requirement..

A typical output stage is shown below,

The external 24 V (absolute max. 25V) DC supply is common to all outputs. Each output can source 50 ma. Connect the 0 V of the external DC supply to pin 8 of Group B (OV digital) to provide protection against inductive loads.

A relay output stage is shown below:

The external 24 V DC supply powers all internal relays. The example above shows a common 24 V DC supply powering internal relays and external loads. If required the relay contacts can switch other supplies up to the above rating.

Output functions can be assigned to any pin on the connectors using the Parameter Configuration mode, or they can be turned off so they do not function. From the factory the unit is defaulted to the configuration shown below.

3.4.1. Default Output Configuration

Group	Y
Gin 9	
Group	Y
Gin 10	
Group	Y
Gin 11	
Group	Y
Gin 12	
Group	Y
Gin 13	
Group	Y
Group 14	
at	pin 15

output 1 output 2 output 3 output 4 output 5 output 6 output 7 at

Y enable
spare
spare spare
spare
spare Y in position

Level high when axis is within inposition limits. Active all times
In datum mode this output will be high to indicate if the axis is datummed PROVIDING the axis position is within the inposition limits of the datum point
Group Y pin 16 output 8

Group X pin 9 output 9
Group X pin 10 output 10
Group X pin 11 output 11
Group X pin 12 output 12
Group X pin 13 output 13
Group X pin 14 output 14
Group X pin 15 output 15
spare
X enable spare
spare spare spare spare X in position Level high when axis is within in position limits. Active when incycle or in the HALT state

| Group X pin 16 | output 16 | system datummed |
| :--- | :--- | :--- | Level high if all axes have been datummed

3.5. InPuT CONNECTIONS

Weidmuler BL3.5 / 8 (order number 159742) plugs are used for input connections Wire the control inputs in accordance with the details in this section. Remember that these wires should be treated as signal wires and kept away from electrically noisy equipment Input Connections are on the bottom row (pin 1 is on left hand side as seen from the rear).

Banks X, Y and A (pins 1-8) have polarising pins at positions 1 and 8 on the plug.
Bank B (pins 9-16) has polarising pins at positions 1 and 7 on the plug.
Bank B (pins $1-8$) has polarising pins at positions 2 and 8 on the plug.
Each input can be configured to be active (ie., cause a response) in one of the following four conditions,
The DC supply to the inputs lines should be $24 \mathrm{~V}(+/-1 \mathrm{~V}$)

LOW	when the input line (at the input pin) is 0 volts
HIGH	when the input line (at the input pin) is +24 volts
+ ve transition	when the input line (at the input pin) is goes from 0 to +24 volts
- ve transition	when the input line (at the input pin) is goes from 24 to 0 volts

Banks X, Y and A (pins 1-8) have polarising pins at positions 2 and 8 on the plug.
Bank B (pins $9-16$) has polarising pins at positions 2 and 7 on the plug.
Bank B (pins $1-8$) has polarising pins at positions 1 and 8 on the plug.

DO NOT MAKE OR BREAK CONNECTIONS WITH THE POWER ON.

A typical internal input circuit termination is shown below

All inputs are terminated internally by the above circuit.
All inputs have one common 0 V line.
An input is made by taking the input line to +24 VDC
Input functions can be assigned to any pin on the connectors using the Parameter Configuration mode, or they can be turned off so they do not function. From the factory the unit is defaulted to the following configuration.

Any of the inputs can be configured to be used as an clear error or warning message. This is the same as pressing the ESCAPE key on the front panel of the MultiStop controller.

3.5.1. Default Digital Input Configuration

All inputs are active HIGH

Group Y pin 1	input 1	spare	
Group Y pin 2	input 2	program number bit 6	part of the bit pattern specifying the program number
Group Y pin 3	input 3	spare	
Group Y pin 4	input 4	spare	
Group Y pin 5	input 5	spare	
Group Y pin 6	input 6	Y near home	Only active in datum mode; This input indicates that the Y axis is near marker the datum marker pulse. The direction of motion is then reversed and slow speed is selected. A search for the datum marker pulse is then carried out
Group Y pin 7	input 7	not $\mathrm{Y}+$ end stop	This input is reserved for this function. It is NOT set as a factory default but has to be assigned in Parameter Configuration mode. This input should be switched off when positive Y axis end stop is reached. This must normally be high to operate. Any motion and program execution will stop and Jog mode will be selected.
Group Y pin 8	input 8	not Y - end stop	This input is reserved for this function. It is NOT set as a factory default but has to be assigned in Parameter Configuration mode. This input should be switched off when negative Y axis end stop is reached. This must normally be high to operate. Any motion and program execution will stop and Jog mode will be selected.
Group X pin 1	input 9	program number bit 0	part of the bit pattern specifying the program number
Group X pin 2	input 10	program number bit 1	part of the bit pattern specifying the program number
Group X pin 3	input 11	program number bit 2	part of the bit pattern specifying the program number
Group X pin 4	input 12	program number bit 3	part of the bit pattern specifying the program number
Group X pin 5	input 13	program number bit 4	part of the bit pattern specifying the program number
Group X pin 6	input 14	program number bit 5	part of the bit pattern specifying the program number
Group X pin 7	input 15	not $\mathrm{X}+$ end stop	This input is reserved for this function. It is NOT set as a factory default but has to be assigned in Parameter Configuration mode. This input should be switched off when positive X axis end stop is reached. This must normally be high to operate. Any motion and program execution will stop and Jog mode will be selected.
Group X pin 8	input 16	not X - end stop	This input is reserved for this function. It is NOT set as a factory default but has to be assigned in

Group A pin 1	input 17 speed is	X near home The direction of motion A search for the datum	Only active in datum mode; This input indicates that the X axis is near marker the datum marker pulse. n reversed and slow pulse is then carried out
Group A pin 2	input 18	Keyboard Disable	inhibits all keyboard activity
Group A pin 3	input 19	Cycle interrupt	Only active when running a program. Causes the program to HALT in its current position. The motors will be switched off.
Group A pin 4	input 20	System Enable	This input is reserved for this function. It is NOT set as a factory default but has to be assigned in Parameter Configuration mode. Checked at all times. If healthy MultiStop can respond to all commands. If this signal is not present then both X and Y enable are switched OFF and all other outputs remain unchanged. The state of the system enable input is constantly displayed in the status bar. When enabled the HEALTHY' is displayed; when not enabled the message will be 'DISABLED' will which is self cancelling should the system enable signal return to the true state.
Group A pin 5	input 21	Select Datum Cycle	Only active if controller is not running a program. Selects datum mode and awaits a start command to begin a datum cycle
Group A pin 6	input 22	start axes	start program from beginning unless in a HALT condition. If in a HALT condition resume program from current program position. This input will also start a datum cycle if datum mode is selected. Pulse this input for a minimum of 100 mS , maximum of 1 second.
Group A pin 7	input 23	Program select strobe	Only checked if not in cycle. When present it causes a new program to be selected. The program number is set by Program bits 0 to 6 . Use a binary code to represent the required program. The program number is the number on the right of the display when the program LIST is shown.
Group A pin 8	input 24	stop axes	stop move and program execution immediately. Pulse this input for a minimum of 100 ms , maximum of 1 second
Group B pin 1		Reserved	
Group B pin 2		Reserved	
Group B pin 3		Reserved	
Group B pin 4		Reserved	
Group B pin 5		Reserved	
Group B pin 6		Reserved	
Group B pin 7		Internal +5 V supply	Reserved for test purposes only.
Group B pin 8		Common OV for all inpu	

3.6. Encoder Connections

The encoders are connected via a 15 way High Density D type Socket (Female) fitted on the
MultiStop.
The encoders are connected via a 15 way High Density D type Socket (Female) fitted on the
MultiStop.

Pin No.	Description
1	+ Phase A
2	+ Phase B
3	No connection
4	+ Marker pulse
5	No connection
6	- Phase A
7	- Phase B

Parameter Configuration mode. This input should be switched off when negative X axis end stop is reached. This must normally be high to operate. Any motion and program execution will stop and Jog mode will be selected.

3.7. RS485 CONNECTIONS

This facility is via 9 way D type Plug (Male) fitted on MultiStop.

Pin No. Signal	Description
1+ TX	transmitted data to remote device
2 -TX	transmitted data to remote device
3 +CTS.	clear to send signal from remote terminal ready
4-CTS.	clear to send signal from remote terminal ready
5 GND	
6 +RX.	received data from remote device
7 RX	.. received data from remote device
8 +DTR.	data terminal ready signal to remote terminal
9............-DTR	data terminal ready signal to remote terminal

The data format used is 8 data bits, even parity and 2 stop bits. The baud rate is 9600 .

3.8. Interbus S Connections (OPTION)

Incoming remote bus IBS signal Pheonix Connector MC1.5/5-G-3.5

Pin No. Signal	Description
........- DO1	data from master (or previous node on bus)
2 + DO1	data from master (or previous node on bus)
3 - DI1	data to master (or previous node on bus)
4 - DI	data to master (or previous node on bus)
5 GND	Ground

Outgoing remote bus IBS signals Pheonix Connector MC1.5/6-G-3.5
Pin No. Signal Description
1RBST................. node status
2 GND................. Ground
3 DI2................. data from next node on bus
4 - DI2................. data from next node on bus
5 + DO2................. data from master to next node on bus
6- DO2................. data from master to next node on bus

3.9. AUTO DATUM CYCLE

This is initiated only using the external digital input signals. The sequence is as follows,

- the external datum cycle is asserted and kept asserted
- the external cycle start is asserted and the X cycle begins its search for X NEAR HOME at the configured datum feed rate
- on seeing the X NEAR HOME signal the speed changes to slow the direction reverses and a search for the marker pulse begins
- on seeing the marker pulse the X INPOSTION line is pulsed to indicate that the marker has been found
- in 2 axes systems the external cycle start line is asserted and the same sequence is carried out for the Y axis.
- once all axes have been datummed the system datummed output line is set
- remove the datum cycle input and the controller will return to the auto mode

3.10. Panel Cut Out Dimensions

Panel cut out

4. PARAMETER CONFIGURATION

Parameters are available to allow the user to configure the MultiStop for use in a wide applications without the need to write low level software.

To enter the user machine configuration mode press <ALT> <.>
A password will be requested. If the correct password is entered the following menu of options will appear. Select the appropriate item and press ENTER

INPUTS SETUP
OUTPUTS SETUP
MACHINE SETUP

Note that not all of the parameters listed below in sections 4.1 to 4.3 are available in the lists that can be edited from these windows. The full list of parameters are only available from the engineering window.
Select the appropriate item and press ENTER. The list of parameters associated with the selection made will then be available for viewing or editing.

To enter the engineering level machine configuration mode press <ALT> <1>
A password will be requested. If the correct password is entered the following menu of options will appear.

INPUTS
OUTPUTS
MACHINE SETUP
X SERVO SETUP
Y SERVO SETUP
FRONTEND SETUP
PASSWORDS

Select the appropriate item and press ENTER. The list of parameters associated with the selection made will then be available for viewing or editing.
A list of the parameters that can be configured is given below.

4.1. InPUT SETUP

Each of the following input functions can be assigned to any of the 24 input pins available. The default configuration and descriptions of the functions are given in section 3.5.
From the engineering window each input can be configured to asserted either as a level or a an edge,
ie., asserted when

$$
\begin{aligned}
& \text { HI } \\
& \text { LOW } \\
& \text { + ve (edge) } \\
& \text { ■ ve (edge) }
\end{aligned}
$$

Inputs that are assigned by default are.
Clear Error if used will reset any error that has been reported.(same as ESCAPE key)
Start program
Stop program
Select datum
Total keyboard disable
System disable
Cycle interrupt
near home X
near home Y
negative end stop X
positive end stop X
negative end stop Y
positive end stop Y
Program Bits 0 to 6 asserted
Program strobe
$\operatorname{Jog} X+$
Jog X -
Jog Y +
Jog Y -
To assign inputs to pins other than the defaults, each pin is given a reference number ranging from 1 to 24 which defines the I/O groups X, Y and A on the rear panel of the MultiStop unit.

Inputs 1 to 8 are on	pins 1-8 on Group Y.
Inputs 9 to 16 are on	pins $1-8$ on Group X.
Inputs 17 to 24 are on	pins $1-8$ on Group A.

Any input function can be disabled by assigning the number $\mathbf{0}$ to it. For example, the end stop inputs may not be relevant on a continuously indexing machine. By assigning 0 to them it means that they do not have to be connected to +24 V for normal operation.
Enter INPUT SETUP window as described above and select the input you wish to reassign, then press ENTER to select it followed by the input pin number you require. Press ENTER again to confirm the assignment.
Press ESC to exit this window.

4.2. OUTPUT SETUP

From the engineering window the asserted state of each output can be defined and the format used is (taking Enable X as an example)
Output \# Enable X 1
Enable X asserted LOW
This results in the X axis output 1 is set to 0 volts a whenever the program enables the X axis.
Each of the following output functions can be assigned to any of the 24 output pins available. The default configuration and descriptions of the functions are given in section 3.5.1

Enable X
X inposition disable if unit is configured as an indexer
Enable YY inposition
disable if unit is configured as an indexer
Datum set
Auxiliary (1 to 8 inclusive)
Auxiliary reset type (1 to 8 inclusive)
To assign outputs to pins other than the defaults, each pin is given a reference number ranging from 1 to 24 which defines the I/O groups X, Y and A on the rear panel of the MultiStop unit.

Outputs 1 to 8 are on pins 9-16 on Group Y.
Outputs 9 to 16 are on pins 9-16 on Group X.
Outputs 16 to 24 are on pins $9-16$ on Group A.
Enter OUTPUT SETUP window as described above and select the output you wish to reassign, then press ENTER to select it followed by the pin number you require. Press ENTER again to confirm the assignment.

Any auxiliary outputs which have been set will reset by default when a PowerTalk program has been stopped or terminates naturally. However, if an auxiliary output is required to remain asserted after a program has stopped, it can be configured to do so by selecting the appropriate 'Auxiliary reset type' for the output. The reset types available to the user are 'LEAVE' (leaving any set auxiliary asserted after program termination) and 'RESET' (forcing the auxiliary to be unconditionally reset after program termination).

5. Machine setup

This window allows the user to define certain machine parameters that configures the MultiStop to the application the X axis to be setup in the appropriate manner and the other the Y axis.

5.1. AXes Type

Options:	Linear or Angular
Setting Method:	Select Axes Type from the system parameter list and press ENTER. Use the UP or DOWN arrow keys to select the required option from the list provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.
Application Notes:	If the angular option is selected then the axis position will overflow at 360 degrees to 0 and underflows at values below zero to 359. As the position over/ under flows a revolution counter is incremented or decremented. The value of the rev counter will be displayed in the AUTO window.
Default Setting:	X axis: Linear Y axis: Linear
Your Setting:	X axis: Y axis:
Also see:	Counts per revolution Scale Factor
Display resolution	

5.2. AXIS MODULUS (ENGINEERING WINDOW ONLY)

Options: $\quad 0$ to 360.000
Setting Method: Select AXIS TYPE from the system parameter list and press ENTER. Enter a numeric value in the option range. Press ENTER to accept the value and to return to the main system parameter list.

Application Notes: This parameter is only used if the angular option is chosen. The controller will reset the axis to zero whenever the position is greater than the modulus value. Also whenever the axis position goes negative the displayed position is reset to the modulus value. A revolution counter keeps track of each of the underflow and overflow events.

Default Setting: $\quad X$ axis: 360.000
Y axis: 360.000
Your Setting: X axis:
Y axis:
Also see: Axis modulus, Scale factor and Display resolution

5.3. APPLICATION TYPE (ENGINEERING WINDOW ONLY)

Options: INDEX or POSTION
Setting Method: Select DAC OFFSET from the system parameter list and press ENTER.
Use the UP or DOWN arrow keys to select the required type from the list of

	options provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.
Application Notes:	If the index option is chosen then the controller will reset the axis that has just moved to 0.000 at the end of the move. If position option is chosen then this action does not occur
Default Setting:	X axis: POSITION (POS'N) Y axis: POSITION (POS'N)
Your Setting: X axis: Y axis:	
5.4. RS485 MASTER OR SLAVE (ENGINEERING WINDOW ONLY)	
Options:	SLAVE or MASTER
Setting Method:	Select DISPLAYED DATA option from the system parameter list and press ENTER. Use the UP or DOWN arrow keys to select the required type from the list of options provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.
Application Notes:	At present the controller can only be set to be a slave
Default Setting:	SLAVE
Your Setting:	
Also see:	
5.5. RS485 AdDress (ENGINEERING WINDOW ONLY)	
Options:	0 to 99
Setting Method:	Select DISPLAYED DATA option from the system parameter list and press ENTER. Enter a numeric value in the option range. Press ENTER to accept the value and to return to the main system parameter list.
Application Notes:	If more than one slave is connected to the RS485 multidrop link then each MultiStop must have a different address
Default Setting:	0
Your Setting:	
Also see: RS	Master or Slave

5.6. DISPLAY RESOLUTION

Options: $\quad 0.05,0.01,0.005,0.001$.
Setting Method: Select Display Resolution from the system parameter list and press ENTER. Use the UP or DOWN arrow keys to select the required resolution from the list of options provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.

Application Notes: By setting this parameter only the number of decimal places is being set and the rounding of the last digit. The resolution of the display will

	ultimately depend upon the encoder resolution and the scaling factor. Do this for each axis.	
Default Setting:	Display Resolution:	X axis: 0.001
		Y axis: 0.001
Your Setting:	Display Resolution	
Also see:	Scaling Factor	
5.7. DISPLAY digits (engineering window only)		
Options:	1 to 10	
Setting Method:	Select Datum Load Value from the system parameter list and press ENTER. Use the numeric keys to enter the system position value at the position of the marker pulse, (this can be a positive or negative value	
Application Notes:	By setting this parameter only the number of decimal places is being set and the rounding of the last digit. The resolution of the display will ultimately depend upon the encoder resolution and the scaling factor. Do this for each axis.	
Default Setting:	Display Digits: X	$\begin{aligned} & 10 \\ & \text { Y axis: } 10 \end{aligned}$
Your Setting:	Display Digits :	
Also see:	Scaling Factor, Dis	Resolution
5.8. Display Data (engineering window only)		
Options:	REAL, PROFILE, ERROR.	
Setting Method:	Select Display Resolution from the system parameter list and press ENTER. Use the UP or DOWN arrow keys to select the required mode of display from the list of options provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.	
Application Notes:		
Default Setting:	Display Resolution: $\quad \begin{aligned} & \text { X axis: } 0.001 \\ & \\ & \text { Y axis: } 0.001\end{aligned}$	
Your Setting:	Display Resolution :	
Also see: Sc	Factor	

5.8.1. Machine Datum Direction

Options: Positive or Negative search direction
Setting Method: Select Machine Datum Direction from the system parameter list and press ENTER. Use the UP or DOWN arrow keys to select the required sign from the list of options provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.

Application Notes: This defines the direction that the system will move to find its Near Home input during a datum cycle. Changing from plus to minus (or vice-versa) will change the direction it travels to find its datum.

Default Setting:	X axis: Positive direction Y axis: Positive direction		
Your Setting::	X axis: Y axis		
Also see:	Count direction Motor phase		
5.9. MACHINE DATUM METHOD		\quad	Manual Datum Only (MAN)
:---			
Options:			
Setting Method:		Select Machine Datum Method from the system parameter list and press	
:---			
ENTER. Use the UP or DOWN arrow keys to select the required option			
from the list provided on the screen. Press ENTER to accept the			
highlighted value and to return to the main system parameter list.			

Manual Datum - The machine datum is set only be set using the keypad. This can only be carried out if the unit is in Jog mode and the appropriate soft key is pressed.

Auto Datum Cycle - The machine is datumed by selecting Datum mode from the soft keys. When the Datum start is pressed the system will carry out a automatic datum cycle. It is required that an input signal (Near Home) is available for this operation. When the Datum is complete the Datum Load value is loaded into the absolute position register of the axis concerned. The auto datum cycle can also be initiated from a digital input.

Default Setting: $\quad X$ axis: Manual Y axis: Manual

Your Setting: $\quad X$ axis:
Y axis:
Also see: Datum Load Value

5.10. DATUM MEMORY

Options:	RESET
	LAST

Setting Method: Select Datum Memory from the system parameter list and press ENTER. Use the UP or DOWN arrow keys to select the required option from the list provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.

Application Notes: The two options have the following meaning,
RESET - The machine datum will be cancelled after every power up of the controller. The machine will now have to be re-datummed before any program can be executed.

LAST - Once the machine has been datumed the controller will record this and there will be no need to redatum the machine after a power up. The datum flags will only be reset in the event of a following error.

Default Setting:	X axis: RESET Y axis: RESET
Your Setting:	X axis: Y axis:
Also see:	Machine Datum Method, Datum Load Value, Overshoot Value

Options:	+/-19999.99 Measurement units
Setting Method:	Select Datum Load Value from the system parameter list and press ENTER. Use the numeric keys to enter the system position value at the position of the marker pulse, (this can be a positive or negative value).
Application Notes:	This parameter can be used to force the axis display position to a given value at the marker pulse position when an automatic datum cycle is complete. Alternatively, it can be loaded into the display by pressing the DATUM button when in Jog mode.
Default Setting:	$\begin{array}{ll} \mathrm{X} \text { axis: } & +0.000 \\ \mathrm{Y} \text { axis: } & +0.000 \end{array}$
Your Setting:	X axis: Y axis:
Also see:	Machine Datum Method

5.12. Count Direction

Options: Positive or Negative

Setting Method: Select Count Direction from the system parameter list and press ENTER. Use the UP or DOWN arrow keys to select the required sign from the list of options provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.

Application Notes: This will invert the positive (and negative!) count direction. If the controller is running in the correct manner when this is changed the motor phase must also be changed. However, when commissioning a new encoder, the system may operate in an uncontrolled manner. In this case only the encoder count direction needs to be changed. Do this for each axis.

Default Setting:	X axis:	positive direction
	Y axis:	positive direction

Your Setting:: $\quad X$ axis:
Yaxis:
Also see: Motor Phase
Machine Datum Direction

5.13. Motor Phase

Options: Positive or Negative
Setting Method: Select Motor Phase from the system parameter list and press ENTER.
Use the UP or DOWN arrow keys to select the required sign from the list of

	options provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.
Application Notes:	This will invert the motor direction. If the controller is running in a stable manner when this is changed the encoder count direction must also be changed. However, when commissioning a new motor or drive, the system may drive in the wrong direction 'out of control' until an error shuts it down. If this was the case before changing this the, encoder phase does not need to be changed.
Default Setting:	Motor phase: $\quad \mathrm{X}$ axis: + direction Y axis: + direction
Your Setting::	Motor phase : X axis: Y axis:
Also see: Machine Datum	Count direction n
5.14. Scale Fac	
Options:	0.000001 to 9.999999
Setting Method:	Select SCALE FACTOR from the system parameter list and press ENTER. Use the numeric keys to enter the required scale factor for the system.
Application Notes:	The scale factor is defined as "The movement represented by one encoder pulse, programmed in display units". For example if one encoder count equals 0.001 mm , the scale factor is 0.001 . If a scale factor greater than the display resolution is used it means the display will not count in increments of one display resolution. This means it may not be possible for a target position to be reached if it falls between encoder counts.
Default Setting:	$\begin{array}{ll} \text { Scale Factor: } & \text { X axis: +0.01 } \\ & \text { Y axis: }+0.01 \end{array}$
Your Setting:	Scale Factor: X axis: Y axis:
Also see:	Display Resolution
Example: $\begin{array}{ll}\text { A } \\ & \text { an } \\ & \text { pu }\end{array}$	is connected via a $2: 1$ drive to a 50 mm diameter pulley. The motor has oder with 2048 lines. It is required to display the distance a point on the moves as the pulley is rotated by the motor.
Number of encoder pulses per rev of motor 2048*4	
Number of encoder pulses per rev of pulley 2048* 4 * 2	
Circumference of pulley 50 * 22/7	
Required scaling factor (50 * 22/7) / (2048 * 8) $=0.009587$	

If a display resolution of 0.01 is chosen then one rev of the pulley would be displayed as 157.08

5.15. NegAtive inposition zone

5.16. POSITIVE INPOSITION ZONE

Options: $\quad 0$ to +99.99

Setting Method:	Select Positive or Negative Inposition Zone from the list and press ENTER. Use the numeric keys to enter a position value, relative to the target position. Then press enter.
Application Notes:	This is the distance (in the positive or negative directions) from the target position within which the INPOSITION output will be set. It can be used to interface to other external logic to allow other functions to occur on a machine. If the unit is configured as an indexer this parameter is not valid and should be disabled in the output line set up.
Default Setting:	Negative X inposition zone: - -1.000 Negative Y inposition zone: - -1.000 Positive X inposition zone: - +1.000 Positive Y inposition zone: - +1.000
Your Setting:	Negative X inposition zone: Negative Y inposition zone: - Positive X inposition zone: - Positive Y inposition zone: -
Also see:	Count direction. Display resolution
5.17. Negative (-VE)	Axis Limit
5.18. POSItive (+VE)	Axis Limit
Options:	+/-99999.999
Setting Method:	Select axis limit from the system parameter list and press ENTER. Use the numeric keys to enter a system position relative to datum (zero), (this can be a positive or negative value). This value must be less than the Positive Axis Limit.
Application Notes:	This is used to determine the limit of axis travel in the positive direction. The axis enable will be turned off if this value is exceeded.
Default Setting:	Negative X axis: - 1000.000 Negative Y axis: -1000.000 Positive X axis: +1000.000 Positive Y axis: +1000.000
Your Setting:	Negative X axis: - Negative Y axis: Positive X axis: Positive Y axis:

5.19. INTERRUPT PERIOD (ENGINEERING WINDOW ONLY)

Options: $\quad 5$ to 30 msec
Setting Method: Select Interrupt period from the system parameter list and press ENTER. Use the numeric keys to enter a lower limit value. Then press enter.

Application Notes: This is the time interval between updating the time critical system variables such as the drive commands, the digital input and outputs and the keyboard scan. The setting of this parameter is a trade off between system
response and the updating of the operator interface, eg the display and keyboard response.

Default Setting:
Your Setting:
Also see:

5.20. MAXIMUM FEED RATE

Options: $\quad 0$ to $1000 \mathrm{~mm} / \mathrm{sec}$

Setting Method:	Select DISPLAYED DATA option from the system parameter list and press ENTER. Enter a numeric value in the option range. Press ENTER to accept the value and to return to the main system parameter list.
Application Notes:	This sets the speed at which the motors will move when they are activated in the JOG mode with coarse feed selected
Default Setting:	X Axis: $100 \mathrm{~mm} / \mathrm{sec}$ Y Axis: $100 \mathrm{~mm} / \mathrm{sec}$
Your Setting:	X axis: Y axis:
Also see:	

5.21. JOG COARSE FEED

Options: $\quad 0$ to $1000 \mathrm{~mm} / \mathrm{sec}$

Setting Method: Select DISPLAYED DATA option from the system parameter list and press ENTER. Enter a numeric value in the option range. Press ENTER to accept the value and to return to the main system parameter list.

Application Notes: This sets the speed at which the motors will move when they are activated in the JOG mode with coarse feed selected

Default Setting: $100 \mathrm{~mm} / \mathrm{sec}$
Your Setting:
Also see: Jog fine feed

5.22. JOG FINE FEED

Options: $\quad 0$ to $1000 \mathrm{~mm} / \mathrm{sec}$
Setting Method: Select DISPLAYED DATA option from the system parameter list and press ENTER. Enter a numeric value in the option range. Press ENTER to accept the value and to return to the main system parameter list.

Application Notes: This sets the speed at which the motors will move when they are activated in the JOG mode with coarse feed selected

Default Setting: $10 \mathrm{~mm} / \mathrm{sec}$
Your Setting:
Also see: Jog coarse feed

5.23. DATUM SPEED

Options:	0 to $1000 \mathrm{~mm} / \mathrm{sec}$
Setting Method:	Select DATUM SPEED option from the system parameter list and press ENTER. Enter a numeric value in the option range. Press ENTER to accept the value and to return to the main system parameter list.
Application Notes:	This sets the speed at which the motors will move when they are activated in a DATUM cycle
Default Setting:	$0.4 \mathrm{~mm} / \mathrm{sec}$
Your Setting:	
Also see:	
5.24. ENCODER COUNTS / REVOLUTION (ENGINEERING WINDOW ONLY)	
Options:	Any positive non zero value.
Setting Method:	Select Encoder Counts/rev from the system parameter list and press ENTER. Use the numeric keys to enter a position value, relative to the target position. Then press enter.
Application Notes:	In order for the over under flow to occur correctly the number of encoder counts that will be received in completing one revolution has to be calculated and inserted into this parameter. The scale factor should be set to the same value as that selected for the display resolution. For example if a 3600 ppr encoder is used and 0.1 degree resolution is required on the display, set scale factor and display resolution to 0.1
Default Setting:	X axis: 3600 Y axis: 3600
Your Setting:	X axis: Y axis:
Also see:	Scale Factor Display resolution

6. SERVO SET

These two windows are identical with one allowing the X axis to be setup in the appropriate manner and the other the Y axis.

6.1. Differential Period

Options: 0 to 99

Setting Method:	Select Differential Period from the system parameter list and press ENTER. Enter a number in the allowable range. Press ENTER to accept the value and to return to the main system parameter list.
Application Notes:	This is the time period over which the rate of change of position error is calculated.
Default Setting:	X axis: 10 Y axis: 10
Your Setting:	X axis: Y axis:
Also see:	Differential term Differential Gain

6.2. PID INTEGRAL TERM

Options: ON or OFF

Setting Method: Select Integral Term from the system parameter list and press ENTER. Use the UP or DOWN arrow keys to select the required option from the list provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.

Application Notes: This turns the integal gain in the PID control loop on and off.
Default Setting: X axis: ON
Y axis: ON
Your Setting: $\quad X$ axis:
Y axis:
Also see: Integral Gain
Integral Limit

6.3. PID DIFFERENTIAL TERM

Options: ON or OFF
Setting Method: Select PID Differential Term from the system parameter list and press ENTER. Use the UP or DOWN arrow keys to select the required option from the list provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.

Application Notes: This turns the Differential gain in the PID control loop on and off.
Default Setting: $\quad X$ axis: OFF

	Y axis: OFF
Your Setting:	X axis:
	Y axis:
Also see:	Differential Gain Differential Period

6.4. PID VELOCITY FF TERM

Options:	ON or OFF
Setting Method:	Select Velocity FF Term from the system parameter list and press ENTER. Use the UP or DOWN arrow keys to select the required option from the list provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.
Application Notes:	This turns the Velocity Feed Foward term in the PID control loop on and off.
Default Setting:	X axis: OFF Y axis: OFF
Your Setting:	X axis: Y axis:
Also see:	Velocity FF Gain
6.5. PID VELOCITY FB TERM	
Options:	ON or OFF
Setting Method:	Select Velocity FB Term from the system parameter list and press ENTER Use the UP or DOWN arrow keys to select the required option from the list provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.
Application Notes:	This turns the Velocity Feed Back term in the PID control loop on and off.
Default Setting:	X axis: OFF Y axis: OFF
Your Setting:	X axis: Y axis:
Also see:	Velocity FB Gain

6.6. DAC OFFSET

Options: +/- 9999 scaled encoder counts
Setting Method: Select DAC OFFSET from the system parameter list and press ENTER. Enter a numeric value in the option range. Press ENTER to accept the value and to return to the main system parameter list.

Application Notes: This value limits the effect of the Integral gain on the PID control loop. When the system is stable and stationary set the display to indicate following error and note its value say 0.10 . Enter -10 as the DAC offset and

	again observe the following error. Repeat until the following error is below an acceptable value for the application
Default Setting:	X axis: 0 Y axis: 0
Your Setting:	X axis: Y axis:
Also see:	Displayed Data, Motor acceleration, all PID parameters
6.7. Motor Acceleration Constant	
Options:	0 to 10000
Setting Method:	Select Motor Acceleration Constant from the system parameter list and press ENTER. Use the UP or DOWN arrow keys to select the required option from the list provided on the screen. Press ENTER to accept the highlighted value and to return to the main system parameter list.
Application Notes:	
Default Setting:	X axis: 0.1 Y axis: 0.1
Your Setting:	X axis: Y axis:
Also see:	
6.8. PID PROPORTIONAL GAIN	
Options:	0 to 10000
Setting Method:	Select Proportional Gain from the system parameter list and press ENTER. Enter a numeric value within the option range. Press ENTER to accept the value and to return to the main system parameter list.
Application Notes:	The is the value of the proportional gain in the PID loop.
Default Setting:	$\begin{aligned} & \text { X axis: } 1.000 \\ & \text { Y axis: } 1.000 \end{aligned}$
Your Setting:	X axis: Y axis:

Also see:

6.9. PID INTEGRAL GAIN

Options: 0 to 10000
Setting Method: Select Integral Gain from the system parameter list and press ENTER. Enter a numeric value in the option range. Press ENTER to accept the value and to return to the main system parameter list.

Application Notes: This is the value of the integral gain in the PID loop.
Default Setting: $\quad X$ axis: 1.000

	Y axis: 1.000 X axis: Y axis:
Your Setting:	Integral Gain Integral Limit
Also see:	
6.10. PID DIFFERENTIAL GAIN	

Also see: Velocity FF Term

6.13. Integral Limit

Options:	0 to 10000
Setting Method:	Select Integral Limit from the system parameter list and press ENTER. Enter a numeric value in the option range. Press ENTER to accept the value and to return to the main system parameter list.
Application Notes:	This value limits the effect of the Integral gain on the PID control loop. Default Setting:\quadX axis: 10.000 Y axis: 10.000
Your Setting:	X axis: Y axis:
Also see:	Integral Gain Velocity FF Term
Options:	ON or OFF

6.14. FOLLOWING ERROR

Options:	0 to 9999 of the minimum displayed distance.
Setting Method:	Select DISPLAYED DATA option from the system parameter list and press ENTER. Enter a numeric value in the option range. Press ENTER to accept the value and to return to the main system parameter list.
Application Notes:	This sets the maximum discrepancy between the real and profile positions that can exist before a following error occurs. Once a following error occurs the system must be redatummed. If a display resolution of 0.01 is chosen then the maximum following error that can be set using this parameter is 99.99 mm . If a value less than 0 is set then the following error tests are disabled
Default Setting:	$\begin{aligned} & \text { X Axis: } 100 \\ & \text { Y Axis: } 100 \end{aligned}$
Your Setting:	X axis: Y axis:
	Also see: Displayed data, control loop parameters
6.15. AXIS TEST LOWER LIMIT	
Options:	0 to 9999 mm
Setting Method:	Select Axis Test (Lo Limit) from the system parameter list and press ENTER. Use the numeric keys to enter a lower limit value. Then press enter.
Application Notes:	This is the position at which the motor will reverse direction when the axis test is underway. The test is initiated by pressing ALT <7> from the AUTO window.
Default Setting:	X axis: - 1000 Y axis: -1000

Your Setting:	X axis: Y axis:
Also see:	Axis Test Feed Rate Axis Test Hi Limit
6.16. AXIS TEST UPPER LIMIT	
Options:	0 to 9999 mm
Setting Method:	Select Axis Test (Hi Limit) from the system parameter list and press ENTER. Use the numeric keys to enter a lower limit value. Then press enter.
Application Notes:	This is the position at which the motor will reverse direction when the axis test is underway. The test is initiated by pressing ALT <7> from the AUTO window.
Default Setting:	$\begin{array}{ll} X \text { axis: } & +1000 \\ Y \text { axis: } & +1000 \end{array}$
Your Setting:	X axis: Y axis:
Also see:	Axis Test Feed Rate Axis Test Lo Limit

7. FRONT END SETUP

In certain applications it may be convenient to allow the operator to change certain variables in the program without allowing him to change the structure of the program. This can be done using a FRONT END window, in which the variables that are allowed to be changed are presented to the operator. Behind this front end window will be a standard power talk program that can be locked out from the operator and which requires a pass number to enter.
The front end allows parameters to be entered and passed to the powertalk program. The text associated with these parameters can be set to meaningful text in the configuration setup of the front end window.
The default front end window has 4 lines of text and 4 variables associated with it.
FRONT END WINDOW

Front End Enable	ON
Var 1 Text	AAA
Var 1 Assignment	INT1
Var 2 Text	BBB
Var 2 Assignment	FLT1
Var 3 Text	CCC
Var 3 Assignment	INT2
Var 4 Text	DDD
Var 4 Assignment	OFF

Note

- a FLT is a floating point variable and must be used if the information being given to the program is not a whole number ie., it has a decimal or fractional part associated with it.
- a INT is a integer variable and can be used if the information being given to the program is a whole number ie., it has no decimal or fractional part associated with it.

The text of the highlighted line can be altered by pressing EDIT and using the scroll keys to change the text. On pressing EDIT the F in the first line will be highlighted and pressing the up arrow will scroll through the alphabet. Once the correct letter or number is displayed use the scroll right arrow to edit the next letter. Continue until the line of text is what is require. (A maximum of 20 characters are allowed per item)
Do this for all the lines of text.
Either a float point or an integer variable can be assigned to front end variable. Select the variable assignment line of text and press ENTER. The various options will be highlighted and either the INT or FLT options can be selected as appropriate. (It is possible to assign one of 20 variables to that line, ie., either FLT 1 to FLT 10 or INT 1 to INT 10). If ENTER is pressed once more when the selected variable will be assigned to that line of the window. Note it is possible to deactivate the any variable text and variable assignment by selecting OFF from the variable menu list.

As an example generate the text 'NO OF CUTS REQUIRED' for variable 1 and press ENTER. Assign INT1 to integer variable 1.
Then generate the text 'LENGTH OF CUT' for variable 2 and press ENTER.
Assign FLT2 to FLOATING POINT variable 2.
Then generate the text 'NO OF CUTS DONE' for variable 3 and press ENTER.
Assign INT2 to integer variable 3
Set all other variable assignments to OFF as they are not required in this front end example.
After editing your front end window (as seen by an operator) would appear as follows, (useful for a simple cut to length program.

By pressing ENTER the selected line of text (highlighted) can be edited and the appropriate numbers inserted. Use the scroll keys to select the various lines.

As an example consider a simple cut to length application in which a 100 lengths of material of length 125 mm are required. It is also required to display the number of lengths cut at any time and to reset the number cut every time the cycle is started.

The parameters of interest to the program are assigned to program variables, either integers for whole numbers, or floating point variables for non integer numbers, ie., any number that may have a decimal component. In the above example the number of sheets cut and the number of cuts required are all whole numbers and are thus integers. The lengths to be cut may not be a whole number and are thus floating point numbers.

NO OF CUTS REQUIRED	100	(assigned to INT1
LENGTH OF CUT	125.000	(assigned to FLT1)
NO OF CUTS DONE	0	(assigned to INT2)

The powertalk program would use these variables to perform the task requested. The program may be as follows,

START

INTEGER(INT2,0
MOTION(X,INC)
FEED (X,100)
LOOPI(INT1)
MOVEF(X,FLT1)
ADJUST(INT2,1)
AUX(1,PUL)
DWELL(2)
ENDLOOP
END_MAIN
ENDFILE
;reset no of cuts done
; do the loop 100 times
;move a distance equal to programmed first length
;increment no of cuts done counter
;pulse an output for a shear
;wait 2 secs

8. PASS WORDS

There are 6 passwords that can be set. These are for access to,

- jog password
- program password
- datum password
- list password
- program window
- start program password
- User configuration password allowing access to
- inputs
- outputs
- machine setup
- engineering configuration password allowing access to
- inputs
- outputs
- machine setup
- servo data
- passwords
- frontend

The pass words can be identical or different as required by the application.
If a password of 0 is set for a window then free entry to that window is allowed.
The same procedure is used to set all pass words,
Options: 0 to 9999
Setting Method: Select the appropriate window from the above list and press ENTER. Use the numeric keys to enter the new password to be used.

Application Notes: This parameter can be used to limit access to critical windows, e.g. program window from the keyboard. If it is set to zero the user has free access to all windows

Default Setting: 1234 for all windows
Your Setting:
Jog password
Datum password
List password
Program password
Start password
Machine setup password
Engineering configuration password

9. MAINTENANCE

The only service that can be performed in the field is the replacement of the memory back up battery and the cold cathode fluorescent lamp used to back light the LCD screen.

9.1. BATTERY REPLACEMENT

To replace the battery the main processor board has to be removed. This is the bottom board in the controller. To carry out this procedure anti static precautions must be taken and a replacement battery must be available before the procedure is started. The following steps should be taken

- remove the controller from the system
- remove the back panel and carefully remove the bottom card from the system. The card is firmly attached to a back plane at the front of the unit by a 50 way inter-pcb connector. Using a screwdriver to push against the back plane leaver out each end of the CPU card a few mm at a time until the board is free.
- locate the battery and the jumper labelled BATT on the circuit board. Remove and carefully save the jumper link, The battery is now isolated and can be unsoldered and replaced with a new battery. Now replace the BATT jumper. This operation must be completed within 30 minutes of removing the jumper or else the data stored in memory may become corrupted.
- replace the card into the back plane making sure that no pin miss alignment occurs at the back plane connector. Ensure that the card is firmly 'home'.
- replace back panel and apply power.
- power up and check that the unit functions
- reinstall in the system and reconnect all input/output connections. Ensure that all connectors are securely mated.
- power up system.

9.2. LCD BACKLIGHT

The cold cathode fluorescent lamp (CFL) is a field replaceable item. The replacement Hitachi part is a 742 X CFL.
Anti-static procedures must be employed to carry out the replacement procedure.

- remove the controller from the system
- remove the back panel and carefully remove the three cards from the system (power supply card, I/O card and main CPU card). Carefully note the position of each card.
- remove the front panel from the controller housing by removing the clip on bezel and then by carefully pealing back the facia in each corner and removing the 4 small countersunk screws
- place the front panel face down on a soft anti-static surface.
- press the centre of the two black retainers to release the retainers
- turn the front panel the correct way up and remove the 2 retainers and the small metal cover that shields the CFL.
- pull gently to remove the CFL back light unit
- turn light guide over and place on a soft surface
- remove the tapes securing the reflector then remove the CFL lamp and cable assembly
- replace the lamp with the new lamp and cable assembly
- wrap the CFL with the reflector sheet and replace the tapes to secure the reflector
- ensure that the CFL back light is free from contamination and replace in into unit.
- replace metal covers and retainers and press centre pin home to secure retainer
- replace front panel in housing and replace 4 countersunk screws
- replace bezel
- insert the 3 circuit boards in their correct position

